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LETTER TO THE EDITOR

Clifford periodicity from finite groups

Luis J Boya† and Mark Byrd‡
Center for Particle Physics, University of Texas at Austin, Austin, TX 78712-1081, USA

Received 17 February 1999

Abstract. We deduce the periodicity eight for the type ofPin andSpin representations of the
orthogonal groupsO(n) from simple combinatorial properties of the finite Clifford groups generated
by the gamma matrices. We also include the case of arbitrary signatureO(p, q). The changes in
the type of representation can be seen as a rotation in the complex plane. The essential result is that
adding a(+) dimension performs a rotation byπ/4 in the counter-clockwise sense, but for each
(−) sign in the metric, the rotation is clockwise.

1. Introduction

The periodicity of Clifford algebras, first described by Atiyahet al [1],

Cn+8 = Cn ⊗ C8

is a fundamental mathematical discovery. It is related to Bott’s periodicity of the homotopy
groups of the classical groups. It is essential inK-theory, in the solution by Adams of the
vector field problem in spheres, etc. It is our aim to give a short proof of this important but
simple property.

In this letter we shall obtain this periodicity from elementary properties of the
representations of finite groups, namely the multiplicative groups generated by the ‘Dirac
gamma matrices’ of the Clifford algebras. This finite group has been considered in the past
[2], but not to our knowledge, applied to this problem.

If we have a positive quadratic form over the reals with isometry groupO(n), recall that
the Clifford algebra is obtained by linearizing it,à la Dirac:∑

(xµ)2 =
∑

(xµγµ)
2.

The algebra is generated by theγµ, where

{γµ, γν} = 2δµν. (1)

There is afinitemultiplicative group

0 = {±1I,±γµ,±γµγν, . . . ,±γ1, . . . , γn ≡ ±γn+1} (2)

with γn+1 = 5nγν , which generates the wholePin(n)group, and the even part

00 = {±1I,±γµγν,±γλγµγνγρ, . . .}
which generatesSpin(n).

† Permanent address: Departamento de Fı́sica Teorica, Facultad de Ciencias, Universidad de Zaragoza, E-50009
Zaragoza, Spain. E-mail address:luisjo@posta.unizar.es
‡ E-mail address:mbyrd@physics.utexas.edu

0305-4470/99/180201+05$19.50 © 1999 IOP Publishing Ltd L201



L202 Letter to the Editor

For our purposes we shall need two well known results from the representation theory of
a finite groupG (see e.g. Bacry [3] or Bröcker and Dieck [4]).

(A) Burnside theorem. The group algebra is a direct sum of complete matrix algebras, and
there are as many of these as there are classes of conjugate elements inG. Let |G| be the
order ofG,

|G| =
∑

classes

(di)
2 (3)

wherei runs through the irreducible representations (irreps) ofG, the same as the number of
classes, anddi is the dimension of the ith irrep.

Both0 and00 are nearly Abelian in the sense that the commutator subgroup is very small.
Hence the Abelianized quotient group is very large. Most of the irreps, in fact all except one
or two, are therefore one-dimensional.

(B) The type,i, of a particular representationD. This is given by the expression

i(D) = 1

|G|
∑
g

χ(g2)

=


+1 for real irreps

0 for complex irreps

−1 for quaternionic, q-real, or quasireal irreps

(4)

whereχD(g) = Tr(D(g)) is the character of elementg in the representationD. The result (4)
also holds for compact groups [4].

In our case the sums in (4) are easy to compute because the anticommutativity (1) implies
the squares(±γλγµγνγρ . . .)2 = ±1I, and the number of them is a simple combinatorial number.

2. Periodicity for Pin(n)

2.1. Even dimension

First, letn = 2ν be even. We have|0| = 2n+1 = 22ν+1. The commutator [0,0] is clearly
= Z2. Hence the Abelianized quotient is half as large as0:

|0/[0,0]| = 22ν .

There are also 22ν + 1 conjugation classes (all binomial terms plus one, which is the only
nontrivial central), so there is auniquesolution to Burnside’s numerical equation (3)

22ν+1 = 22ν · 12 + 1 · (2ν)2
and there is a single irrep of dimension 2ν , the(s)pinrepresentation,1.

Thetypeof 1 is easy to compute; it is

i(1) = 2 · 2ν
22ν+1

[
1 +

(
2ν

1

)
−
(

2ν

2

)
−
(

2ν

3

)
+

(
2ν

4

)
+ · · ·

]
.

The factor of two in the numerator is the± sign in (2) and 2ν is the dimension of1. It is
clear why the signs alternate in blocks of two:γ 2

ν = +1 implies(γµγν)2 = −1 which implies
(γµγνγρ)

2 = −1, etc. Hence,

i(1) = 1

2ν

[
1−

(
2ν

2

)
+

(
2ν

4

)
− + · · ·

]
+

1

2ν

[(
2ν

1

)
−
(

2ν

3

)
+− · · ·

]
= 1

2ν
[Re(1 + i)2ν + Im (1 + i)2ν ] = (Re + Im)[(1 + i)/

√
2]2ν
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which gives

i(1) = (Re + Im)e2π in/8 (5)

for n = 2ν, even. So that forn even the periodicity is clearly seen to be eight,

i(1) = cos(2πn/8) + sin(2πn/8).

Note that there arenocomplex irreps for thePin(2ν) groups.

2.2. Odd dimension

The computation forn = 2ν + 1 odd is similar:

|0| = 2 · 22ν+1 = 22ν+2.

The Burnside relation gives

22ν+2 = 22ν+1 · 12 + 2 · (2ν)2.
There are nowtwo Pin(2ν + 1) irreps of the same type; call them still1:

i(1) = 2 · 2ν
22ν+2

[
1 +

(
2ν + 1

1

)
−
(

2ν + 1

2

)
−
(

2ν + 1

3

)
+ · · ·

]
= 1√

2
(Re + Im)[(1 + i)/

√
2]2ν+1 (6)

so that

i(1) = 1√
2
(cos(2πn/8) + sin(2πn/8)) (7)

for n = 2ν + 1 odd. This, together with (5), completes the periodicity eight:

i(1) = 1, 1, 1, 0,−1,−1,−1, 0, 1, 1, 1, . . .

n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . .

The essential, simple result is that adding a dimension (in this ‘Euclidean’ case) corresponds
to a rotation ofπ/4.

3. Periodicity for Spin(n)

Now we use the restricted finite Clifford group

00 = {±1I,±γµγν,±γλγµγνγρ, . . .}
|00| = 2n.

Let n = 2ν even. The Burnside relation gives

22ν = 22ν−1 · 12 + 2 · (2ν−1)2.

The two spin irreps are the traditional1±. So forn even their types are given by

i(1±) = 2 · 2ν−1

22ν

[
1−

(
2ν

2

)
+

(
2ν

4

)
− · · ·

]
= cos(2πn/8). (8)

Forn = 2ν + 1 odd, the Burnside relation gives

22ν+1 = 22ν · 12 + 1 · (2ν)2.
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The type of the representation is then

i(1+) =
√

2 cos(2πn/8) (9)

for n odd. Combining (8) and (9) we recover the usualSpin(n)periodicity eight:

i(1±) = 1, 1, 0,−1,−1,−1, 0, 1, 1, 1, 0, . . .

n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . .

The relation betweenPin(n−1) withSpin(n)is to be expected since the corresponding complete
Clifford algebras coincide [5].

4. The case of signature

It is easy to extend the results above for a metric with signature(p, q)wherep, q arearbitrary
positive integers. Now we have more groups:

O(p, q) SO(p, q) SO0(p, q)

where theSO0(p, q) is the connected part. Now the finite group0 generatesPin(p,q), but the
restricted group,00, generates onlySpin(p,q), which coversSO0(p, q) twice.

The signature complication is inessential, aseach negative sign dimension corresponds
to aπ/4 rotation in the opposite (clockwise) sense. To prove this, it is enough to reckon the
type for the negative-definite metric,(0, n). Now (γµ)2 = −1, so sets of odd numbers ofγ
change sign, but the even sets do not. Hence,

Type(0, n) = P
(
(1− i)√

2

)n
= P exp(−2π in/8) (10)

whereP is the projection (with the appropriate factor of
√

2 as before), (Re + Im ) for the
completePin group, and Re only for theSpinpart.

As the angles add independently, we have

Type(p, q) = P[exp(2π ip/8) exp(−2π iq/8)]

= P[exp(2π i(p − q)/8) (11)

which of course can be proved directly from the sums(
1 +

(
p − q

1

)
−
(
p − q

2

)
−
(
p − q

3

)
+

(
p − q

4

)
· · ·
)

(
1 +

(
p

1

)
−
(
p

2

)
−
(
p

3

)
· · ·
)(

1−
(
q

1

)
−
(
q

2

)
+

(
q

3

)
· · ·
)
.

We have thatPin(p, q) 6= Pin(q,p), but theSpingroups are the same. The double covering of
the connected part is unique, but the extensions fromO(p, q) andO(q, p) are different.

Formula (11) is our final result. It shows eight-periodicity in the signature(p− q), which
is well known. We recall some consequences.

• The so-called split forms(p, p) and(p + 1, p) are real.
• The Lorentzian metric(p, 1) has type(p−1), so it is two in Minkowski space, regardless

of whether it is(3, 1) or the light cone(2, 0).
• The same for the conformal extensionO(p, q)→ O(p + 1, q + 1), the type is still that of
(p, q).
• The Lorentz groupsO(25, 1) andO(9, 1) used in string theory are of the real type. This,

no doubt, is crucial for the scale anomaly cancellation.
• The anomaly-free gauge groupO(32) used in type I and Heterotic string theory is also of

the real type.
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5. Final remarks

Clifford periodicity eight for the real orthogonal groups is an important phenomenon; so we
find it satisfying to be able to provide a proof that is intrinsic, i.e., does not depend on the
particular representation of the gamma matrices. It also covers thePin as well as theSpin
groups, and deals with the case of arbitrary signature.

The existence of two groups for the full orthogonal group has found an interesting
application in paper [6]. In fact, the reflection properties of spinorsdo depend on the sign
of the metric, and even in the ‘skeleton’ finite Clifford group this difference shows up.

We might mention another periodicity shown by one of us [7], which should be related to
the case discussed here; namely the optical theorem in quantum mechanical scattering. This
also depends on the dimension of the space with periodicity eight (although it has other factors,
such as the volume of the sphere and the inverse of the momentum to some power, that depend
on the dimension of the space as well). The formula reads [7]

σtot + 2

(
2π

k

)(n−1)/2

Re{e2π i(n−1)/8f (0)} = 0 (12)

whereσtot is the total elastic scattering cross section inn-dimensional space andf (0) is the
forward scattering amplitude. The similarity with the results above is striking and the reason,
we think, is the same: the wavefunction is a kind of ‘square root’ of an orthogonal observable,
and hence behaves like a spinor. This argument was already advanced in [7].

Finally, we call attention to the book [8] in which there is also a ‘clock’ withZ/8 rotations.
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